咨询热线

400-007-6266

010-86223221

我国PVD镀膜行业两大主流镀膜技术及发展现状分析(图)

         PVD (Physical Vapor Deposition)技术是制备薄膜材料的主要技术之一,在真空条件下采用物理方法,将某种材料气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基板材料表面沉积具有增透、反射、保护导电、导磁、绝缘、讨腐蚀、抗氧化、防辐射装饰等特殊功能的薄膜材料的技术。用于制备薄膜材料的物质被称为PVD镀膜材料。经过多年发展,PVD镀膜技术被广泛用于应用于电子、光学、机械、建筑、材料等领域,溅射镀膜和真空蒸发镀膜是最主流的两种PVD镀膜方式。

         溅射镀膜和溅射靶材

         溅射(Sputtering)镀膜技术利用离子源产生的离子,在高真空中经过加速聚集,而形成高速度能的离子束流,轰击固体表面,离子和固体表面原子发生动能交换,使固体表面的原子离开固体并沉积在基底表面而形成薄膜材料。被轰击的固体原料是用溅射法沉积薄膜的原材料,称为溅射靶材。

         溅射靶材具有高纯度、高密度、多组元、晶粒均匀等特点,一般由靶坯和背板组成。靶坯属于溅射靶材的核心部分,是高速离子束流轰击的目标材料。靶坯被离子撞击后,其表面原子被溅射飞散出来并沉积于基板上制成电子薄膜。由于高纯度金属强度较低,因此溅射靶材需要在高电压、高真空的机台环境内完成溅射过程。超高纯金属的溅射靶坯需要与背板通过不同的焊接工艺进行接合,背板起到主要起到固定溅射靶材的作用,且需要具备良好的导电、导热性能。

 
图:溅射镀膜工作原理示意图

         按使用的原材料材质不同,溅射靶材可分为金属/非金属单质靶材、合金靶材、化合物靶材等。溅射镀膜工艺可重复性好、膜厚可控制,可在大面积基板材料上获得厚度均匀的薄膜,所制备的薄膜具有纯度高、致密性好、与基板材料的结合力强等优点,已成为制备薄膜材料的主要技术之一,各种类型的溅射薄膜材料已得到广泛的应用,因此,对溅射靶材这一具有高附加值的功能材料需求逐年增加,溅射靶材亦已成为目前市场应用量最大的PVD镀膜材料。


图:溅射靶材分类
 

图:溅射靶材

         溅射技术起源于1842年格罗夫在实验室发现了阴极溅射现象。他在研究电子管阴极腐蚀的时候,发现阴极材料迁移到真空管壁上来了。但是由于当时的实验设备比较落后,对于溅射的物理机理一直不是很清楚。到20世纪初期,只对化学活动性很强的材料采用溅射技术,20世纪70年代后真正出现了磁控溅射技术,出现了商品化的溅射装备并应用于小型生产。20世纪80年代,溅射技术真正进入工业化大生产的时代。随后到了21世纪,各种新型溅射技术的出现让溅射技术走向辉煌。现在的溅射技术已经成为一个相当成熟的工艺,并且广泛应用于半导体、光伏、显示屏等各个产业。


图:溅射靶材发展历程 
 
         超高纯金属及溅射靶材是电子材料的重要组成部分,溅射靶材产业链主要包括金属提纯、纪材制造、溅射镀膜和终端应用等环节,其中,靶材制造和溅射镀膜环节是整个溅射靶材业链中的关键环节。


图:溅射靶材产业链
 
         上游的金属提纯主要从自然界重点金属矿石进行提纯,一般的金属能达到99.8%的纯度,溅射靶材需要达到99.999%的纯度。靶材制造环节首先需要根据下游应用领域的性能需求进行工艺设计,然后进行反复的塑性变形、热处理来控制晶粒、晶向等关键指标,再经过水切割、机械加工、金属化、超生侧试、超声清洗等工序。溅射靶材制造所涉及的工序精细且繁多,工序流程管理及制造工艺水平将直接影响到溅射靶材的质量和良品率。此环节是在溅射靶材产业链条中对生产设备及技术工艺要求最高的环节,溅射薄膜的品质对下游产品的质量具有重要影响。在溅射镀膜过程中,溅射靶材需要安装在机台中完成溅射反应,溅射机台专用性强、精密度高,市场长期被美国、日本跨国集团垄断,主要设备提供商包括AMAT(美国), U LVAC(日本)、AN ELVA(日本)、Varian(美国), U LVAC(日本)等行业内知名企业。

         参考观研天下发布《2016-2022年中国PVD产业竞争现状调研及十三五发展趋势前瞻报告


图:溅射靶材工艺流程

         终端应用是针对各类市场需求利用封装好的元器件制成面向最终用户的产品,包括太阳能电池、智能手机、平板电脑、家用电器等终端消费电子产品,此环节技术面较宽,呈现多样化特征。在溅射靶材应用领域中,半导体芯片对溅射靶材的金属材料纯度、内部微观结构等方面都设定了极其苛刻的标准,因此半导体芯片对溅射靶材的要求是最高的,通常要求达到99.9995% (5N5)以上,价格也最为昂贵。相较于半导体芯片,平面显示器、太阳能电池对于溅射靶材的纯度和技术要求略低一筹,分别要求达到99.999%(5N),99.995%(4N5)以上。但随着靶材尺寸的增大,对溅射靶材的焊接结合率、平整度等指标提出了更高的要求。

         真空蒸发镀膜和蒸镀材料

         真空蒸发镀膜是指在真空条件下,通过蒸发源加热蒸发某种物质使其沉积在基板材料表面来获得薄膜的一种技术。被蒸发的物质被称为蒸镀材料。蒸发镀膜最早由M.法拉第在1857年提出,经过一百多年的发展,现已成为主流镀膜技术之一。

         真空蒸发镀膜系统一般由三个部分组成:真空室、蒸发源或蒸发加热装置、放置基板及给基板加热装置。在真空中为了蒸发待沉积的材料,需要容器来支撑或盛装蒸发物,同时需要提供蒸发热使蒸发物达到足够高的温度以产生所需的蒸汽压。


图:真空蒸发镀膜工作原理示意图
 
         真空蒸发镀膜技术具有简单便利、操作方便、成膜速度快等特点,是应用广泛的镀膜技术,主要应用于光学元器件、LED、平板显示和半导体分立器的镀膜。真空镀膜材料按照化学成分主要可以分为金属/非金属颗粒蒸发料,氧化物蒸发料,氛化物蒸发料


图:蒸镀材料种类
 
 
图:真空镀膜材料 

         蒸镀材料主要工艺流程包括混料,原料预处理,成型,烧结和检侧等。将配制好的原料经过机械混合达到均匀分散(混料),然后进行常温或高温处理(原料预处理)来提高材料的纯度,细化颗粒的粒度,激发材料的反应活性,降低材料烧结温度。接下来经过机械方式将材料加工至达到所需规格(成型)。成型后将材料在高温下烧结,使陶瓷生坯固体颗粒的相互键联,最后成为具有某种显微结构的致密多晶烧结体的过程(烧结)。待蒸镀材料生产完后,采用蒸发镀膜设备对材料的性能进行检侧,检查产品性能指标是否合格。


图:真空镀膜材料加工工艺流程

         溅射镀膜和蒸发镀膜的对比:溅射镀膜工艺可重复性好、膜厚可控制,可在大面积基板材料上获得厚度均匀的薄膜,所制备的薄膜具有纯度高、致密性好、与基板材料的结合力强等优点,已成为制备薄膜材料的主要技术之一,各种类型的溅射薄膜材料已得到广泛的应用,因此,对溅射靶材这一具有高附加值的功能材料需求逐年增加,溅射靶材亦已成为目前市场应用量最大的PVD镀膜材料。蒸发镀膜简单便利、操作方便、成膜速度快。从工艺制造角度上来看,蒸镀材料的制造复杂度要远远低于溅射靶材,蒸发镀膜常用于小尺寸基板材料的镀膜。


图:溅射镀膜和蒸发镀膜对比
 
资料来源:观研天下整理,转载请注明出处(ztt)

更多好文每日分享,欢迎关注公众号

【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。

电化学储能逐渐成为储能主要形式,AI数据中心亦将驱动储能行业进一步发展

电化学储能逐渐成为储能主要形式,AI数据中心亦将驱动储能行业进一步发展

考虑配储功率为 1:1 及配储时长在 3-4 小时之间,预计每 100MW 的数据中心建设有望带动 450-800MWh 的储能需求。未来数据中心储能需求有望高速增长,预计 2027 年全球数据中心储能需求将突破 69GWh,到 2030 年储能需求将增长至 300GWh。

2025年09月04日
全球能源转型加速,储能领域碳酸锂市场需求前景向好

全球能源转型加速,储能领域碳酸锂市场需求前景向好

锂云母端受高成本压力及环保问题的影响,叠加江西地区高品位锂云母供应偏紧,产量增速放缓,同比增加17%;盐湖端凭借其成本优势持续放量,同比增加37%;回收端因当前废旧电池地区资源错配所造成的原料结构性短缺,导致产能无法高效利用,叠加利润亏损压力下,24年产量同比下滑19%,仅占比10%。

2025年08月18日
我国正大力发展新型储能 产业已进入高速增长期

我国正大力发展新型储能 产业已进入高速增长期

截至2024年底,全国已建成投运新型储能项目累计装机规模达7376万千瓦/1.68亿千瓦时,约为“十三五”末的20倍,较2023年底增长超过130%,全年新增新型储能装机4237万千瓦/1.01亿千瓦时。全国新型储能平均储能时长2.3小时,较2023年底增加约0.2小时,“十四五”以来储能时长呈上升趋势。

2025年08月15日
全球钾资源区域供需错配,中国进口依赖显著

全球钾资源区域供需错配,中国进口依赖显著

氯化钾是复合肥及多种钾盐的直接原料,其中用于复合肥生产占比最高,达47.5%,用于生产硫酸钾、硝酸钾、氢氧化钾等占比39.5%,直接施用占比较低,仅8%。

2025年08月15日
超导材料行业:高温超导有望后来居上 可控核聚变装置将成重要应用方向

超导材料行业:高温超导有望后来居上 可控核聚变装置将成重要应用方向

高温超导受限于技术,整体市场应用占比仍较小。截至2022年,全球低温超导材料占比超9成,随着超导线缆、可控核聚变等持续发展应用,预计高温超导材料的市场份额将会逐步扩大,高温超导材料整体的占比有望稳定提升。

2025年08月11日
项目落地、建设提速 我国煤化工行业进入高质量发展阶段

项目落地、建设提速 我国煤化工行业进入高质量发展阶段

煤炭是由碳、氢、氧、氮等元素组成的黑色固体矿物,其大分子结构核心是芳香环,环数随变质程度提高而增加,芳香环之间通过桥键相连。我国资源禀赋呈现“富煤、贫油、少气”的特征,截止2023年底,我国煤炭储量为2185.7亿吨,而石油、天然气剩余技术开采储量分别为38.51亿吨和6.74万亿立方米,煤炭资源的可靠性与可持续性显著

2025年08月09日
BC电池有望成为光伏技术升级主要方向 多家企业开始布局相关生产线

BC电池有望成为光伏技术升级主要方向 多家企业开始布局相关生产线

自 2023 年起,以 TOPCon 为代表的 N 型电池技术逐步成为市场主流。与此同时,XBC 电池凭借其更高的转换效率、更优的弱光性能以及与其他技术路线良好的兼容性,增长势头强劲。预计未来五年,其出货占比将从 2024 年的近 5%提升至 25%以上。

2025年08月07日
全球铟市场持续扩大 中国为最大铟生产国、但尚未形成核心竞争优势

全球铟市场持续扩大 中国为最大铟生产国、但尚未形成核心竞争优势

2020年全球铟市场规模为1.46亿美元,随着市场需求持续扩大,到2024年全球铟市场规模达到了4.91亿美元,2020-2024年复合增长率为35.42%,与全球稀散金属产业市场同步增长。

2025年07月23日
微信客服
微信客服二维码
微信扫码咨询客服
QQ客服
电话客服

咨询热线

400-007-6266
010-86223221
返回顶部