咨询热线

400-007-6266

010-86223221

2017年锂电池隔膜行业壁垒与工艺流程及发展方向分析(图)

        湿法涂覆隔膜性能优越,应用空间广阔 

        锂离子电池是现代高性能电池的代表,由正极材料、负极材料、隔膜、电解液四个主要部分组成。

        其中,隔膜是一种具有微孔结构的薄膜,是锂离子电池产业链中最具技术壁垒的关键内层组件,在锂电池中起到如下两个主要作用:
        1)隔开锂电池的正、负极,防止正、负极接触形成短路;

        2)薄膜中的微孔能够让锂离子通过,形成充放电回路。

 
图:锂电池内部结构

 

图:锂电池隔膜产品

        锂电池隔膜生产工艺复杂、技术壁垒高 

        高性能锂电池需要隔膜具有厚度均匀性以及优良的力学性能(包括拉伸强度和抗穿刺强度)、透气性能、理化性能(包括润湿性、化学稳定性、热稳定性、安全性)。隔膜的优异与否直接影响锂电池的容量、循环能力以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。 
 
        锂电池隔膜具有的诸多特性以及其性能指标的难以兼顾决定了其生产工艺技术壁垒高、研发难度大。隔膜生产工艺包括原材料配方和快速配方调整、微孔制备技术、成套设备自主设计等诸多工艺。其中,微孔制备技术是锂电池隔膜制备工艺的核心,根据微孔成孔机理的区别可以将隔膜工艺分为干法与湿法两种。 
 
        干法隔膜按照拉伸取向分为单拉和双拉 

        干法隔膜工艺是隔膜制备过程中最常采用的方法,该工艺是将高分子聚合物、添加剂等原料混合形成均匀熔体,挤出时在拉伸应力下形成片晶结构,热处理片晶结构获得硬弹性的聚合物薄膜,之后在一定的温度下拉伸形成狭缝状微孔,热定型后制得微孔膜。目前干法工艺主要包括干法单向拉伸和双向拉伸两种工艺。 
 
        干法单拉

        干法单拉是使用流动性好、分子量低的聚乙烯(PE)或聚丙烯(PP)聚合物,利用硬弹性纤维的制造原理,先制备出高取向度、低结晶的聚烯烃铸片,低温拉伸形成银纹等微缺陷后采用高温退火使缺陷拉开,进而获得孔径均一、单轴取向的微孔薄膜。 
 
        干法单拉工艺流程为:
        1)投料:将 PE 或 PP 及添加剂等原料按照配方预处理后输送至挤出系统。

        2)流延:将预处理的原料在挤出系统中经熔融塑化后从模头挤出熔体,熔体经流延后形成特定结晶结构的基膜。

        3)热处理:将基膜经热处理后得到硬弹性薄膜。

        4)拉伸:将硬弹性薄膜进行冷拉伸和热拉伸后形成纳米微孔膜。

        5)分切:将纳米微孔膜根据客户的规格要求裁切为成品膜。 
 
 
图:干法单拉工艺流程

        干法双拉 

        干法双拉工艺是中科院化学研究所开发的具有自主知识产权的工艺,也是中国特有的隔膜制造工艺。由于 PP 的β晶型为六方晶系,单晶成核、晶片排列疏松,拥有沿径向生长成发散式束状的片晶结构的同时不具有完整的球晶结构,在热和应力作用下会转变为更加致密和稳定的α晶,在吸收大量冲击能后将会在材料内部产生孔洞。该工艺通过在 PP 中加入具有成核作用的β晶型改性剂,利用 PP 不同相态间密度的差异,在拉伸过程中发生晶型转变形成微孔。 

         参考中国报告网发布《2017-2022年中国锂电池隔膜产业竞争现状及发展态势预测报告

        干法双拉工艺流程为:
        1)投料:将 PP 及成孔剂等原料按照配方预处理后输送至挤出系统。

        2)流延:得到β晶含量高、β晶形态均一性好的 PP 流延铸片。

        3)纵向拉伸:在一定温度下对铸片进行纵向拉伸,利用β晶受拉伸应力易成孔的特性来致孔。

        4)横向拉伸:在较高的温度下对样品进行横向拉伸以扩孔,同时提高孔隙尺寸分布的均匀性。

        5)定型收卷:通过在高温下对隔膜进行热处理,降低其热收缩率,提高尺寸稳定性。 
 
        湿法隔膜按照拉伸取向是否同时分为异步和同步 

        湿法工艺是利用热致相分离的原理,将增塑剂(高沸点的烃类液体或一些分子量相对较低的物质)与聚烯烃树脂混合,利用熔融混合物降温过程中发生固-液相或液-液相分离的现象,压制膜片,加热至接近熔点温度后拉伸使分子链取向一致,保温一定时间后用易挥发溶剂(例如二氯甲烷和三氯乙烯)将增塑剂从薄膜中萃取出来,进而制得的相互贯通的亚微米尺寸微孔膜材料。湿法工艺适合生产较薄的单层 PE 隔膜,是一种隔膜产品厚度均匀性更好、理化性能及力学性能更好的制备工艺。根据拉伸时取向是否同时,湿法工艺也可以分为湿法双向异步拉伸工艺以及双向同步拉伸工艺两种。 

        湿法异步拉伸工艺流程为:

        1)投料:将 PE、成孔剂等原料按照配方进行预处理输送至挤出系统。2)流延:将预处理的原料在双螺杆挤出系统中经熔融塑化后从模头挤出熔体,熔体经流延后形成含成孔剂的流延厚片。

        3)纵向拉伸:将流延厚片进行纵向拉伸。

        4)横向拉伸:将经纵向拉伸后的流延厚片横向拉伸,得到含成孔剂的基膜。  

        5)萃取:将基膜经溶剂萃取后形成不含成孔剂的基膜。

        6)定型:将不含成孔剂的基膜经干燥、定型得到纳米微孔膜。

        7)分切:将纳米微孔膜根据客户的规格要求裁切为成品膜。 

  

图:湿法异步拉伸工艺

        湿法同步拉伸技术工艺流程与异步拉伸技术基本相同,只是拉伸时可在横、纵两个方向同时取向,免除了单独进行纵向拉伸的过程,增强了隔膜厚度均匀性。但同步拉伸存在的问题第一是车速慢,第二是可调性略差,只有横向拉伸比可调,纵向拉伸比则是固定的。 

  

图:湿法同步拉伸工艺

        湿法涂覆是锂电池隔膜发展方向 
 
        湿法隔膜整体性能优于干法隔膜 


        隔膜产品的性能受基体材料和制作工艺共同影响。隔膜的稳定性、一致性、安全性对于锂电池的放电倍率、能量密度、循环寿命、安全性有着决定性影响。相比于干法隔膜,湿法隔膜在厚度均匀性、力学性能(拉伸强度、抗穿刺强度)、透气性能、理化性能(润湿性、化学稳定性、安全性)等材料性质方面均更为优良,有利于电解液的吸液保液并改善电池的充放电及循环能力,适合做高容量电池。从产品力的角度来说湿法隔膜综合性能强于干法隔膜。 
 
        湿法隔膜同样存在缺点,除因受限于基体材料导致热稳定性较差外多为非产品因素,如需要大量的溶剂,易造成环境污染;与干法工艺相比设备复杂、投资较大、周期长、成本高、能耗大、生产难度大、生产效率较低等。在湿法隔膜中,双向同步拉伸技术可在横、纵两个方向同时取向,免除了单独进行纵向拉伸的过程,增强了隔膜厚度均匀性,产品透明度高、无划伤、光学性能及表面性能优异,是综合性能最好的隔膜,在隔膜高端市场中占据着重要的地位,也是现阶段市场表现最好的锂电池隔膜。 

 
表:锂电池隔膜干湿法工艺对比

 

表:干湿法工艺隔膜性能对比

资料来源:中国报告网整理,转载请注明出处(GQ)


更多好文每日分享,欢迎关注公众号

【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。

全球电动化、智能化、低碳化浪潮下 中国锂电池行业需求市场空间广阔

全球电动化、智能化、低碳化浪潮下 中国锂电池行业需求市场空间广阔

2024年全球锂电池产能突破4.5TWh,其中中国产能占比高达62%,总产量达到1170GWh,同比增长24%,行业总产值超过1.2万亿元。其中,消费型、储能型和动力型锂电池产量分别为84GWh、260GWh、826GWh。

2025年10月28日
生物燃料减排特性突出,助力国内废弃食用油回收

生物燃料减排特性突出,助力国内废弃食用油回收

在全球各地区生物柴油消费量的市场份额中,欧盟以39.4%的份额位居首位,美国紧随其后,占比20.6%。印尼和巴西分别占据13.8%和12.5%的市场份额,中国的生物柴油消费量相对较低,仅占1.5%,其他地区的市场份额则为12.2%。

2025年10月21日
固态电池负极材料技术迭代,锂金属负极为长期技术演进方向

固态电池负极材料技术迭代,锂金属负极为长期技术演进方向

固态电池解决液态电池痛点,成为最有前景的电池新技术。根据《固态电池研究及发展现状》(洪月琼等,2023),固态电池因有望解决目前动力电池能量密度低和安全隐患两大痛点,成为最有前景的电池系统。固态电池具备能量密度高、安全、循环寿命长和应用温度范围宽等优势。

2025年10月01日
我国天然气贸易逆差持续扩大 行业盈利受宏观经济政环境影响较大

我国天然气贸易逆差持续扩大 行业盈利受宏观经济政环境影响较大

根据国家能源局于2025年1月23日举行的例行新闻发布会的数据显示,2024年,我国进口煤炭5.4亿吨,同比增长14.4%;进口原油5.5亿吨,同比下降1.9%,但对外依存度仍高达70%以上;进口天然气1.3亿吨,同比增长9.9%,对外依存度高达40%以上且有进一步上升态势。

2025年09月22日
电化学储能逐渐成为储能主要形式,AI数据中心亦将驱动储能行业进一步发展

电化学储能逐渐成为储能主要形式,AI数据中心亦将驱动储能行业进一步发展

考虑配储功率为 1:1 及配储时长在 3-4 小时之间,预计每 100MW 的数据中心建设有望带动 450-800MWh 的储能需求。未来数据中心储能需求有望高速增长,预计 2027 年全球数据中心储能需求将突破 69GWh,到 2030 年储能需求将增长至 300GWh。

2025年09月04日
全球能源转型加速,储能领域碳酸锂市场需求前景向好

全球能源转型加速,储能领域碳酸锂市场需求前景向好

锂云母端受高成本压力及环保问题的影响,叠加江西地区高品位锂云母供应偏紧,产量增速放缓,同比增加17%;盐湖端凭借其成本优势持续放量,同比增加37%;回收端因当前废旧电池地区资源错配所造成的原料结构性短缺,导致产能无法高效利用,叠加利润亏损压力下,24年产量同比下滑19%,仅占比10%。

2025年08月18日
我国正大力发展新型储能 产业已进入高速增长期

我国正大力发展新型储能 产业已进入高速增长期

截至2024年底,全国已建成投运新型储能项目累计装机规模达7376万千瓦/1.68亿千瓦时,约为“十三五”末的20倍,较2023年底增长超过130%,全年新增新型储能装机4237万千瓦/1.01亿千瓦时。全国新型储能平均储能时长2.3小时,较2023年底增加约0.2小时,“十四五”以来储能时长呈上升趋势。

2025年08月15日
全球钾资源区域供需错配,中国进口依赖显著

全球钾资源区域供需错配,中国进口依赖显著

氯化钾是复合肥及多种钾盐的直接原料,其中用于复合肥生产占比最高,达47.5%,用于生产硫酸钾、硝酸钾、氢氧化钾等占比39.5%,直接施用占比较低,仅8%。

2025年08月15日
微信客服
微信客服二维码
微信扫码咨询客服
QQ客服
电话客服

咨询热线

400-007-6266
010-86223221
返回顶部