咨询热线

400-007-6266

010-86223221

人工智能的前世今生以及未来发展方向

        前言:2016年,科技界的大事之一有阿尔法狗大战李世石,问鼎围棋,将人工智能的热点推向高潮,人工智能的概念在全球开始流行,第一次出现在普通大众的生活中,2017年10月,最新版本的“阿尔法狗零”,自学三天,就将上个版本的阿尔法狗打了个100:0,人工智能再次进入人们的视野。本文主要介绍人工智能的发展历史和发展现状以及人工智能的主要影响。
        一、人工智能的诞生
        人工智能,英文缩写 AI,它是一门研究和开发用于模拟和拓展人类智能的理论方法和技术手段的新兴科学技术。智能(intelligence)是人类所特有的区别于一般生物的主要特征。可以解释为人类感知、学习、理解和思维的能力,通常被解释为“人认识客观事物并运用只是解决实际问题的能力,往往通过观察、记忆、想象、思维、判断等表现出来”。人工智能正是一门研究、理解、模拟人类智能,并发现其规律的学科。
        人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,势必承载着人类科技的发展进步。
        人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人类智能,但能像人那样思考、更有可能超过人类智能。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
        1956年的达特茅斯会议标志着人工智能的诞生:John McCarthy联合Minsky、Claude Shannon、Nathaniel Rochester在达特茅斯组织了两个月的Workshop。达特茅斯会议将不同的研究领域的研究者组织在了一起,提出了“人工智能”这个名词,人工智能也成为了一个独立的研究领域。参会者尽管只有十人,但是他们中的每一位在未来很长的一段时间都对人工智能领域产生了举足轻重的影响。
达特茅斯会议的参会者,人工智能领域的巨头
 
资料来源:公开资料整理
        二、人工智能的发展
        根据中国报告网发布《2018-2023年中国人工智能产业市场运营现状分析及未来前景商机预测报告》显示,人工智能发展至今,还不到一个世纪,虽然世人早已发行其前景无限,但由于技术水平不足,已经经历了两次低谷,人工智能发展阶段如下:
人工智能发展阶段示意图
 
资料来源:公开资料整理
        1、第一次高潮(1956-1970年代)
        达特茅斯会议之后,人工智能迎来了发展的黄金时期,出现了大量的研究成果。Herbert Simon、J.C.Shaw、Allen Newell 创建了通用解题器(General Problem Solver),是第一个将待解决的问题的知识和解决策略相分离的计算机程序;Nathanial Rochester 的几何问题证明器(Geometry Theorem Prover)可以解决一些让数学系学生都觉得棘手的问题;Daniel Bobrow 的程序 STUDENT 可以解决高中程度的代数题;McCarthy 主导的 LISP 语言成为了之后 30 年人工智能领域的首选;Minsky、Seymour Aubrey Papert 提出了微世界(Mircro world)的概念,大大简化了人工智能的场景,有效地促进了人工智能的研究。微世界程序的最高成就是 Terry Winograd 的 SHRDLU,它能用普通的英语句子与人交流,还能作出决策并执行操作。     第一次黄金时期离不开资金的支持。1963 年,ARPA(后来的 DARPA,美国国防部高级研究计划局)拨款 220 万美元给 MIT,并于之后每年提供 300 万美元(至 1970 年代结束)。更重要的是,ARPA 的经费并没有附带明确要求,这提供给了 MIT科学家梦寐以求的研究氛围。
        第一次黄金时期让人们对人工智能领域充满了乐观情绪,甚至人工智能的领军人物 Minsky 都认为“在三至八年里我们将得到一台具有人类平均智能的机器”。
        2、第一次低潮(1970-1980年代)
        人们的乐观情绪在 1970 年代渐渐被浇灭。研究者发现,即使是最尖端的人工智能程序也只能解决他们尝试解决的问题中的最简单的一部分。        人工智能还遭遇了以下一些问题:
        只依靠简单的结构变化无法扩大化以达到目标(Simple syntactic manipulationcannot scale)。美国国家研究署尝试用自动化翻译加速翻译俄语论文。一开始他们认为通过简单的词语替换和句子结构的修改可以达到足够高的可读程度,但是后来他们发现,单词的意思与前后文紧紧关联,而多义词的解释则需要对背景知识的了解。毫无疑问,这次尝试失败了。
        存储空间和计算能力的严重不足:例如,Ross Quillian 的自然语言处理程序只包括 20 个单词,因为这是存储的上限。
        指数级别攀升的计算复杂性:1972 年 Richard Karp 的研究表明,许多问题只能在指数级别的时间内获解,即计算时间与输入的规模的幂成正比。
        缺乏基本知识和推理能力:研究者发现,就算是对儿童而言的常识,对程序来说也是巨量信息。1970 年代没有人建立过这种规模的数据库,也没人知道怎么让程序进行学习。
        Moravec 悖论:一些人类觉得复杂的问题,如几何证明,对机器而言十分简单。但人的很基本技能,如人脸识别,对机器而言却是一个巨大的挑战。这也是 1970年代机器人和视觉识别发展缓慢的原因。
        随着人工智能发展遭遇瓶颈,资金纷纷抛弃人工智能领域。由于项目失败等原因,DARPA 也终止了对 MIT的拨款。到了 1970 年代中期,人工智能项目已经很难找到资金支持。
        3、第二次高潮(1980-1990年代)     这次黄金时期的到来,专家系统(Expert system)功不可没。专家系统专注于某一个领域,因而设计简单,易于实现,而且避免了所谓的“常识问题”。商业领域第一个成功的专家系统是 Digital Equipment Corporation 的 R1,从 1982年至 1988 年,它帮助公司平均每年节约 4000 万美元。到了 1988 年,全球顶尖的公司都已经装备了专家系统:DEC 部署了 40 个专家系统,杜邦部署了 100个。随着专家系统的大规模应用,知识库系统和知识工程得到了普及。
专家系统示意图
 
资料来源:公开资料整理
        另一个重大的助力是日本的第五代计算机项目(第五世代コンピュータ)。它是日本通商产业省(现经济产业省,けいざいさんぎょうしょう)在 1982 年推出的一个大型研发企划,目的是开发采用平行架构的拥有人工智能的革命性的电脑,开创下一个时代。整个计划预计 10 年完成,3 年用于先期研究,4 年用于子系统开发,最后 3 年组成一个可运行的原型,整个项目预算高达 570 亿日元。

计算机代数划分

代数

电子元件

编程语言

第一代

真空管

机器语言

第二代

半导体

汇编语言

第三代

集成电路

高级编程语言

第四代

大规模集成电路

SQL

第五代

发展中

发展中

资料来源:公开资料整理

日本第五代计算机概念图
 
资料来源:公开资料整理
        受此计划的刺激,其他强国纷纷采取应对策略。1983年,英国开始了预算3.5亿英镑的Alvey工程,关注大规模集成电路、人工智能、软件工程、人机交互(包含自然语言处理)以及系统架构;在美国,DRAPA组织了战略计算促进会,年投资额在四年内增长了2倍;而在准将BobbyRay Inman的领导下,一群美国的计算机和半导体厂商组成MCC(Microelectronicsand Computer Technology Corporation,微电子与计算机技术集团)财团,在系统架构设计、芯片组装、硬件工程、分布式技术、智慧系统等方向发力。

        在这个时期内,算法也得到了突破性的进展。1982 年,John Hopfield 证明Hopfield 网络可以学习并处理信息,David Rumelhart 则提出了反向传播算法。它们和 1986 年发表的分布式处理的论文一起,为 1990 年代神经网络的商业化打下了坚实的基础。    

         4、第二次低潮(1980-1990年代)

       随着专家系统的不断发展,复杂度的快速提升,基于知识库和推理机的专家系统显示出了让人不安的一面:难以升级扩展,鲁棒性不够,直接导致高昂的维护成本。1980年代末期,由于人工智能的项目成果不明朗,DARPA大幅削减了对人工智能的资金支持。1991年,英国政府发布Alvey工程的最终报告,报告指明,Alvey工程达到了其设定的技术目标,但是并没有提升英国在信息技术市场的竞争力。报告将原因归集为“资本的短缺和管理运营的低效率”。Alvey工程主管Brain Oklay指出,信息技术工业应更注重培训、市场推广和研究成果的商业化。他抱怨道日本的低利率让高科技公司可以开发低毛利产品,而英国的高利率阻止了公司这么做。
        尽管英国觉得日本的计划更为成功,但 1992 年 6 月,日本政府宣布向全世界公开第五代计算机项目所开发的软件,允许任何人免费使用,这标志着日本雄心勃勃的第五代计算机项目的失败。第五代计算机项目并没有带来人工智能的突破,甚至有人说,第五代计算机项目的最大收获其实是项目的副产物:其训练了成百上千的计算机领域的专家。该项目的失败有多重原因,一般认为,通用型微型机对专用型大型机的冲击及项目研发成果缺乏商业化场景是项目失败的重要原因。
        5、第三次高潮(1990-至今)
        1997 年 5 月 11 日,IBM 制造的专门超级计算机深蓝(Deep Blue),在经过多轮较量后,击败了国际象棋世界冠军 Garry Kasparov。尽管不乏 IBM 作弊的声音,但这个事件标志着人工智能的研究到达了一个新的高度,也给人工智能做了一次大规模的宣传。
        2000 年代后,随着大数据的普及、深度学习算法的完善、硬件效能的提高,人工智能的应用领域变得更广,应用程度也变得更深,2016 年,人工智能市场规模超过 80 亿美元,人工智能领域的竞争也愈发白热化。更多内容请期待本系列的后续文章。
        三、人工智能产业发展现状
        目前,全球范围内总计1485家与人工智能技术有关公司的融资总额达到了89亿美元。与任一个行业相比,89亿美元的融资量都显得微不足道,但同比2016年年初的48亿美元的融资总额,人工智能产业已然大获丰收。伴随着我国BAT等科技巨头积极规划的战略布局的成功推出,国内人工智能产业发展同样十分迅速,及时了解行业现状尤为重要。
        1、企业
        当前,全球人工智能企业集中在少数国家,其中美国、中国、英国企业数分别为2905、709、366,总共占据全球企业的65.73%。
2017年全球人工智能企业分布
 

资料来源:观研天下数据中心整理
        中国人工智能企业主要集中在北京、上海、广东等发达地区,发达地区的人工智能企业约占全国的85%左右。其中,北京市为人工智能企业集中创新地。
        经济发达地区的信息化程度较高、互联网发展迅速、融资环境优良,适合各类高新产业的成长发展。上述数据也表明了人工智能企业在经济较为发达地区的发展要更为迅速。
        2、融资
        根据中国报告网发布《2018-2023年中国人工智能产业市场运营现状分析及未来前景商机预测报告》显示,全球人工智能企业的融资情况与企业分布的情况大致相同,美国人工智能企业在2016年融资总量约为180亿美元,中国企业为25.7亿美元,英国企业为8.16亿美元。中国2015年人工智能行业获投金额约为100亿人民币,同比上升40%左右,略低于全球平均水平,其中机器人领域的投资比例则居于全领域首位。

2016年全球人工智能企业融资情况
 

资料来源:公开资料整理
        3、成果
        全球专利数据库的数据表明,美国人工智能行业申请的专利总数约为2.7万件,中国为1.6万件,日本位列全球第三、约为1.5万件。将美国和中国的公司总数和融资金额分别与专利成果相对比,中国人工智能企业创造专利成果的效率要远远高于美国。2017年2月美国《大西洋月刊》中的刊文指出:中国的大学及公司在研发和使用人工智能方面已开始超越美国同行。
        根据中国报告网发布《2018-2023年中国人工智能产业市场运营现状分析及未来前景商机预测报告》显示,中国人工智能企业专利数量按地区分布明显,集中在北京、上海、江苏、广东和浙江五个地区,占总体60%左右。其中,机器人方向的专利占总体的38%左右。
        4、政策
        近年来,世界各国和国际组织纷纷出台相关政策扶持人工智能产业。以美国、欧盟和中国为例,制定计划内容如下:



近年来各国人工智能计划概况

国家

日期

部门

计划

内容

美国

20134

奥巴马政府

“推进创新神经技术脑研究计划”

探索人类大脑工作机制并计划最终开发出针对大脑疾病的疗法

20139

美国国家卫生研究院

“推进创新神经技术脑研究计划”

重点资助9个大脑研究领域

201610

美国白宫科技政策办公室

推进创新

制定了未来十年详细计划,预计每年投入3-5亿美元开发新设备

201610

美国白宫科技政策办公室

《为人工智能的未来做好准备》、《国家人工智能研究与发展战略计划》

前者指出人工智能的发展现状及潜在问题;后者提出了美国人工智能战略及建议

欧盟

2013年年初

欧盟委员会

“人脑计划”

汇聚了来自24个国家的112家的有关机构,总投资将达到12亿欧元,是欧盟新兴旗舰项目

20146

欧盟委员会与欧洲机器人协会

《欧盟机器人研发计划》

计划在工厂、空中、陆地、水下、农业、健康、教授服务以及欧洲许多其他应用提供机器人

中国

20155

国务院

《中国制造2025

加快发展智能制造装备和产品

20157

国务院

《国务院关于积极推进互联网行动的指导意见》

促进人工智能的推广应用

20161

国务院

《“十三五”国家科技创新规划》

智能制造和机器人成为科技创新2030项目”重大工程之一

20165

国家发展改革委、科技部、工信部

《“互联网”人工智能三年行动实施方案》

培育发展人工智能新兴产业

20165

 中共中央、国务院

《国家创新驱动发展战略纲要》

将智能制造等高新科技的发展列为战略任务

20167

中共中央、国务院

《国家信息化发展战略纲要》

发展智能制造,智能城市的规划

201612

工信部、财政部

《智能制造发展规划(2016-2020年)》

制定了我国智能制造产业未来10年的规划与目标

资料来源:公开资料整理
        四、人工智能技术对人类社会的主要影响
        (1)取代重复简单劳动力
        人工智能技术的崛起将导致“失业潮”的发生已基本成为行业的共识。“世界经济论坛”2016 年年会,基于对全球企业战略高管和个人的调查发布的报告称:未来五年,机器人和人工智能等技术的崛起,将导致全球 15 个主要国家的就业岗位减少 710 万个,2/3 将属于办公和行政人员。莱斯大学计算机工程教授摩西瓦迪近日同样表示,今后 30 年,电脑可以从事人类的所有工作,他预计,2045 年的人类失业率将超过 50%。
        (2)新成员进入社会
        一方面,人们迫切希望人工智能能代替人类在各种各样的劳动中,另一方面,他们担心人工智能的发展会带来新的社会问题。事实上,近年来,社会结构正在悄然的发生变化。社会结构正在由“人-机器”到“人-智能机器-机器”悄然的转变。因此,人们必须开始学习如何与智能机器和睦相处。
        (3)人类容易滋生惰性思维方式
        人工智能对知识的掌握将会是动态的,是会不断增加和更新的,而且知识更新的速度远超人类的极限,这势必会影响到人类的思维方式,使得越来越多的人过度的依赖人工智能的计算,从而自身的主动思维能力日渐下降。这会造成人们对于事物和是非的判断能力减弱,到最后只是一味的听取计算机给予的建议,认知能力越来越弱,并逐渐开始对社会产生错觉。并且在日常生活中失去对问题的求知责任感,这或许才是人工智能真正的威胁吧。
        (4)像核武器般技术失控
        任何新技术最大危险莫过于人类对它失去了控制,或者是它落入那些企图利用新技术反对人类的人手中。就像我们现实生活中存在的核武器,在相当长的一段时间内有核国家确实对一些世界邪恶力量起到了震慑作用,可在这个和平年代,我们不得不随时担心核武器所带来的不可控的后果。人类发明了核武器,可越来越发现根本无法控制它所将带来的恐怖影响。如果人工智能技术发展继续遵循武器的发展规律,也必将出现技术失控的现象,而这门技术将带来的负面影响要远大于武器,至于结果,从我们近些年创造的科幻电影就能看得出。
        五、中国国内人工智能发展方向
        目前来看,我国体量较大的四巨头,在AI方面均有投入,其中以百度最为积极,直接将人工智能定位为公司发展的下一个主要方向;而阿里则将AI应用到线下零售门店,无人超市就是试水之作;腾讯则将AI和居民生活联系起来,如人脸识别技术和医学影像等;华为则将AI技术应用到手机业务中,2017年10月份已经发布收款AI芯片的手机。这四家公司代表了我国国内人工智能行业的发展方向。
国内主要公司人工智能研究方向
资料来源:观研天下数据中心整理
        六、中国在人工智能行业的竞争力分析
        1、华人在人工智能领域贡献度高,中国全面发力追赶美国
        华人在人工智能领域的贡献度高,中国持续赶超美国。根据此前美国白宫发布的报告显示,从2014年开始,在深度学习领域(当前人工智能的主要突破领域),从论文发表数量和被引用次数两个标准看,中国均已超过美国。根据互联网数据,华人在AI领域的贡献度持续提升,2006到2016年间,华人作者参与的顶级AI论文,占全部顶级AI论文数量的比例,从23.2%逐年递增到45.3%。而华人作者参与的顶级AI论文被引用次数,占全部顶级AI论文被引用次数的比例从25.5%逐年递增到59.6%。
2006-2016年华人在 AI 领域贡献变化趋势

资料来源:公开资料整理
        国内人工智能公司近年来在算法、计算能力、数据层面的积累逐步提升,包括科大讯飞、BAT在内的互联网公司也在全球人工智能领域具有很强的竞争力。根据《MIT科技评论》公布的2017全球最聪明50家公司榜单,国内有9家公司上榜,分别为科大讯飞、腾讯、Face ++(旷视科技)、大疆、阿里巴巴、蚂蚁金服、百度、富士康、HTC。
中美人工智能各领域团队人数分布

资料来源:观研天下数据中心整理
        2、市场空间大,预计未来应用加速落地后将进一步打开增长空间
2020年全球AI市场规模将达到1190亿元,年复合增速约19.7%;同期中国人工智能市场规模将达91亿元,年复合增速超50%。事实上,随着人口老龄化、人力成本攀升,以及危重工种从事意愿降低,AI的商业化进程正逐步加快。
        由于目前人工智能技术主要应用感知智能技术,因此市场空间尚未打开,预计随着诸如无人驾驶汽车等认知智能技术的加速突破与应用,人工智能市场将加速爆发,未来人工智能+汽车、人工智能+医疗等产业均将创在巨大的商业价值。
        结语:
        人工智能,将是未来科学技术发展的主要发展方向,虽然目前还面临着许多困境,如伦理风险、技术风险、军事风险等,但是有如核技术一样,虽然有危险,但只要人类能找到合理利用的方法,同样可以造福人类。
        当前人工智能还处于弱人工阶段,人工智能还要很长的路要走。因此,人工智能的当前重点在于大力研发,让人工智能在人民生活中扮演更加重要的角色。
资料来源:观研天下整理,转载请注明出处(ZTT)
更多好文每日分享,欢迎关注公众号

【版权提示】观研报告网倡导尊重与保护知识产权。未经许可,任何人不得复制、转载、或以其他方式使用本网站的内容。如发现本站文章存在版权问题,烦请提供版权疑问、身份证明、版权证明、联系方式等发邮件至kf@chinabaogao.com,我们将及时沟通与处理。

游戏产业高质量发展  AI+游戏趋势明朗 应用空间广阔

游戏产业高质量发展 AI+游戏趋势明朗 应用空间广阔

我国游戏产业生态持续优化,国内游戏市场规模稳中有增。一方面,政策扶持力度加大,游戏版号稳定发放,进口版号发放频率提升。另一方面,多款长青产品运营平稳,数款新游凭借精良制作与玩法创新收获高热度与好口碑,游戏产业在促进经济发展、助力文化传播、激发科技创新等方面凸显出积极的社会价值。根据中国音像与数字出版协会游戏出版工作委员

2025年07月02日
我国eCall即将进入全面普及阶段 车联网安全需求亦将驱动行业渗透率快速提升

我国eCall即将进入全面普及阶段 车联网安全需求亦将驱动行业渗透率快速提升

伴随我国 eCall 强制性国家标准逐步落地,“车与 X+eCall”将持续为自动驾驶的安全出行保驾护航。自动驾驶是实现无人驾驶终极形态的必经阶段,按照技术发展程度可以分为 L0(应急辅助)、L1(部分驾驶辅助)、L2(组合驾驶辅助)、L3(有条件自动驾驶)、L4(高度自动驾驶)、L5(完全自动驾驶)五级。

2025年06月17日
我国小程序游戏市场迅猛发展 年产值翻倍式增长 行业逐渐进入迈入精品化竞争周期

我国小程序游戏市场迅猛发展 年产值翻倍式增长 行业逐渐进入迈入精品化竞争周期

近年来,我国小程序游戏市场迅猛发展,年产值翻倍式增长。根据数据显示,2024年,我国小游戏市场规模398.36亿元,同比增长99.18%,而同年的游戏市场实际销售收入3257.83亿元,同比增长7.53%。可见,小游戏作为拥有碎片化休闲时间增多的用户市场,已成为游戏产业新增量的增长点。

2025年06月12日
北斗产业带领我国空间信息行业实现自主发展 市场应用需求正呈多样化趋势

北斗产业带领我国空间信息行业实现自主发展 市场应用需求正呈多样化趋势

随着云计算、大数据、物联网、人工智能等新技术的不断发展和应用,空间信息行业迎来了技术融合与创新的新阶段。这些新技术的引入和应用,提升了空间信息获取、处理、分析和应用的效率和质量,推动了行业的快速发展。2024年我国空间信息行业市场规模达到了8519亿元。

2025年04月08日
我国网站建设行业正处成熟创新期  AI等互联网技术助力下网站数量回升

我国网站建设行业正处成熟创新期 AI等互联网技术助力下网站数量回升

近年来,随着我国工业化进程的加快及信息化投入的逐年增加,在国家一系列政策的支持下,我国软件和信息技术服务产业规模迅速扩大,技术水平得到显著提升,已发展成为战略新兴产业的重要组成部分。根据工信部网站公开数据显示,2023 年,我国累计完成软件业务收入 123,258 亿元,同比增长 13.4%。

2025年03月20日
我国算力行业关键核心技术不断取得突破 高性能计算持续处于全球第一梯队

我国算力行业关键核心技术不断取得突破 高性能计算持续处于全球第一梯队

随着疫情结束后市场需求回暖以及国家将加快5G、大数据中心、工业互联网、人工智能等七大领域新型基础设施的建设进度,以及云计算、人工智能、边缘计算和5G等新兴技术在行业的深度应用,中国服务器市场需求旺盛,服务器出货量也随之不断增长。2024年上半年,中国服务器出货量为265.08万台。

2025年02月25日
多模态大模型与各产业融合正加速落地 百度、腾讯、阿里巴巴等占据市场重要地位

多模态大模型与各产业融合正加速落地 百度、腾讯、阿里巴巴等占据市场重要地位

在市场需求的增长以及政策支持的背景下,我国大模型市场规模将不断增长,预计到2025年市场规模将突破300亿元。而多模态大模型作为AI模型的发展方向,在各项相关技术愈发成熟下,其应用领域也将愈发广泛,比如说商业定制、游戏和影视等。2024年上半年,国内多模态大模型行业市场规模为33.33亿元

2025年02月11日
我国电子游戏行业:小程序游戏带来新增量 腾讯、网易等巨头占据较大市场份额

我国电子游戏行业:小程序游戏带来新增量 腾讯、网易等巨头占据较大市场份额

2023年,国内电子游戏市场实际销售收入3029.64亿元,同比增长13.95%,首次突破3000亿关口。2024年1-6月,国内游戏市场实际销售收入1472.67亿元,同比增长2.08%,增长趋势平缓。

2024年12月02日
微信客服
微信客服二维码
微信扫码咨询客服
QQ客服
电话客服

咨询热线

400-007-6266
010-86223221
返回顶部